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Received 5 May 1988 

Abstract. The analysis of the electronic properties of the tight-binding Fibonacci Hamil- 
tonian is carried out here using dynamical systems techniques. Two classes of Fibonacci 
sequences are considered, corresponding to the cases when there are two types of building 
blocks and also when there are three types of building blocks. The recursion relations for 
the traces of the transfer matrices are determined and studied for various extensions of 
the Fibonacci case with the golden mean. Some differences are obtained between the 
various types of second-order Fibonacci sequences and are most likely due to long-range 
order. Applications of this work to the transmission of light through a multilayered medium 
and the electrical resistance of a one-dimensional quasicrystal, as determined by the 
Landauer formula, are presented. 

1. Introduction 

The dynamical map for the trace of the transfer matrices has been rigorously explored 
in a number of papers. The interest in this problem has so far been mainly concerned 
with the tight-binding Schrodinger equation for which either the potential energy or 
kinetic energy terms take on two values arranged in a Fibonacci sequence with the 
golden mean [l-191. The Fibonacci series with the golden mean is one example of a 
generalisation of sequences recently introduced by the authors [20-221. In this paper, 
we explore these maps and discuss some examples which might be verified experi- 
mentally. 

In this investigation, we consider two cases where the building blocks of the 
Fibonacci sequence take on ( a )  one of two values A and B, and ( b )  one of three values 
A, B and C. For the binary sequence, the sequence of As and Bs is the Fibonacci 
sequence S,, which is constructed recursively as 

for 1 L 2 and m and n are positive integers. For the ternary sequence, the recursion 
relation for the sequence of As, Bs and Cs is 

Sf+, = [s;l*s;-lSPl (2) 

where m, n and p are also positive integers. The initial conditions will be presented 
in the text. The tight-binding non-diagonal Schrodinger equation is 
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where CLI denotes the wavefunction at the lth site and { t f }  are the hopping matrix 
elements. The diagonal version of this equation is 

where { V,} are the values which the potential energy can have. Various studies have 
been made of the electronic spectra of a quasiperiodic model. It has been shown that 
the spectra are singular continuous for a class of Fibonacci lattices. In this case, the 
wavefunctions are critical and are in a sense intermediate between localised and 
extended states. Other cases of a singular continuous spectrum have been demonstrated 
by Hofstadter [ 2 3 ]  and Avron and Simon [24]. 

We investigate ( 3 )  and (4) using dynamical systems techniques first introduced by 
Kohmoto et a1 [ l ]  and adopted by many others. Scaling properties of the electronic 
states and the energy spectrum are discussed. Several new dynamical maps are 
introduced and analysed. The eigenvalues of the Jacobian matrices of transformation 
for these maps reveal some effects related to the quasiperiodicity of the sequences. 

In 0 2 the method of Kohmoto et al is applied to some examples of second-order 
Fibonacci series to obtain the dynamical maps and Cantor set spectra. The critical 
wavefunctions are also discussed in this section and we also examine the varying 
degrees of disorder by calculating the eigenvalues of the linearised dynamical mappings. 
In 9 3 ,  the quasiperiodic dynamics of a third-order Fibonacci lattice is examined. 
Section 4 contains a calculation of the transmission coefficient for light through various 
types of Fibonacci lattices. Section 5 deals with a calculation of the resistance of a 
quasicrystal given by the Landauer formula. A summary of our results is given in 0 6. 

2. Dynamical maps, energy spectra and invariants for second-order Fibonacci series 

In this section, we derive the dynamical system described by a map for various types 
of Fibonacci series which are constructed according to (1). Both the off-diagonal 
model of ( 3 )  and the diagonal model of (4) are considered in our calculations. The 
quasiperiodic Schrodinger equation (4) can be written as 

where the transfer matrix is given by 

E - V ,  -1 
M ( l ) = (  ,>. 

The values of the wavefunctions at arbitrary lattice sites are obtained by repeatedly 
applying ( 5 a )  which gives 

( G N + l )  = M ( N ) M ( N -  1). * . M(2)M(L)(  $1). 
+N CLO 

We have thus reduced the problem to calculating products of unimodular (determinant 
equal to unity) 2 x 2 matrices. For the second-order Fibonacci lattices, the potential 
V, has values V, and V,. If N is a Fibonacci number given by the recursion relation 
Fl+l = mFf-,  + nF, where m and n are positive integers, Mf is defined by 

Mj = M (  Fj)M(Ff - 1) . . . M ( 2 ) M (  1). (7) 
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Since a Fibonacci sequence is constructed by (l),  the matrix M, on the Fibonacci 
sublattice, i.e. the Fibonacci number sites, is given by the recursion formula 

MI+, = M'_,MY (8) 

for 1 1 with MO = MB and MI = M A .  The matrix recursion relation given by (8) can 
be interpreted as a kind of renormalisation group equation. As a matter of fact, Niu 
and Nori [25] have presented a renormalisation group approach based on novel 
decimation techniques which could be used as an alternative to study such systems. 
The Fibonacci sequence in (8) could be constructed by the inflation transformation 
B + A', A + B""A'" where A" is a string of n A. Subsequently, the transfer matrix is 
transformed according to M,(A,  B)  + M,+,(A', B')  where M,(A,  B )  is a product of F, 
matrices arranged in a Fibonacci sequence as in (7 )  and M,+l(A' ,  B' )  is given in a 
similar way. 

We now obtain the energy spectrum for an infinite lattice made up of a block of 
A and B arranged in a Fibonacci sequence, with periodic boundary conditions. The 
energy spectrum is defined by those values of the energy for which the corresponding 
wavefunctions are bounded. This is satisfied when the eigenvalues of M, are complex 
with a magnitude of unity as 1 + 03. Since the matrix M, is unimodular, this condition 
could be transferred to the trace which must satisfy ITr M,I < 2, as I + CO. Delyon and 
Petritis [I51 proved that this model cannot have localised states. We now obtain a 
reduced dynamical system for the spectrum of several second-order Fibonacci sequen- 
ces. Since the lattice with the golden mean has been dealt with in detail, we will 
consider only those cases where m and n in (8) are not both equal to unity. In our 
calculations, we define x, = fTr M,.  

We now give some details for the recursion relations among the traces of the transfer 
matrices corresponding to several lattices which are generalisations of the Fibonacci 
lattice [20-221. 

2.1. The silver mean 

For this case, we set m = 1 and n = 2 in the recursion relation (8) and the ratio of 
successive Fibonacci numbers has the lim,+m F,+,/ F, = 1 + 2"2 = ws, the silver mean. 
We have 

M,,, + M , - ,  = MJ- ,M/ (M,  +MY') .  (9) 

Taking the trace of (9), we obtain 

XI+,  = 4~1t1+1 - xi-, ( l o a )  

where t ,  = T T ( M ~ - ~ M ~ - , ) / ~ .  That is, the recursion relation in (loa) cannot be expressed 
in terms of x, only. A recursion relation for tl has been derived and the result is 

tJ+l = x,-,x/ - t , .  ( lob )  

Equations (10) jointly define the dynamical map in three dimensions for the Fibonacci 
series with the silver mean. The initial conditions are x, = 4 Tr MA,  x2 = 4 Tr(MAMB) 
and t3 = x1(x2-4) - (V, - vB)/4. Defining a three-dimensional vector by r, = 
(XI, y J ,  z , )  = (xJ, x , + ~ ,  tlt2), (IO) can be written as a non-linear dynamical map 

PI+,  = F s ( ~ l )  = [ Y J ,  ~ Y A  - x J ,  Y J ( ~ Y ~ ~ J  - X I )  - 4 .  (11) 
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The invariant for the dynamical map in (10) can be derived in a rather straightfor- 
ward way. Equation (loa) yields 

xt+I(x,+I  -4x1t1+1) =x,-1(~1-1 -4x1t1+,) (12) 

where the factors in brackets on the left- and right-hand sides of (12) are simply -x,-, 
and -x I+ ' ,  respectively. Adding x: to both sides of (12), and substituting for xJxI+1 

and xI- ,xl  from (lob),  we obtain after a little algebra the invariant for F, in ( 1 1 ) :  

I ,=x:+y:+4z:-4x~lzl-1.  (13) 

Thus the orbits of ( 1 1 )  are confined on the same two-dimensional manifold as the 
dynamical system for the Fibonacci sequence with the golden mean. This manifold 
has a central part which is topologically similar to the surface of a sphere with four 
arms coming out of the sphere and moving out to infinity. In fact, from our initial 
conditions, we obtain I ,  = ( V ,  - VB)2/4. Clearly, with a = (I,+ 1)'l2, we have 

AS(0,0,a/2)+ B, (0 ,0 , -a /2)+As.  

That is, A, and B, are fixed points of F f .  We also have a four-cycle orbit: 

C,(O,U,O)+D,(U,O,~)+E,(O, -U,O)+H~(-U,~ ,O)+C~.  

When I, = 0, the four arms just touch the central part and we can set xI = cos 8, where 
8, is real and satisfies 

e,+, = 2 4  + e,-]. (14) 

Linearisation of F f  and F: about their fixed points yields the Jacobian matrix of the 
mapping [26]. The eigenvalues and eigenvectors of the family of fixed points determine 
the stability and motion near the fixed points. The eigenvalues for the fixed points of 
period two are 

A = l  A, = - 2 ~ ' -  1 f 2 ~ (  1 + a2)'12. 

The eigenvalues of the fixed points of period four are 

A = l  A,=  1 - 1 6 ~ ~ + 3 2 ~ ~ * 4 ~ ( 4 ~ ~ - 1 ) ( 4 ~ ~ - 2 ) ' ' ~ .  

We note that, like the map with the golden mean, each family of fixed points has an 
eigenvalue A = 1.  Also for both Fibonacci sequences, the Jacobian matrix has deter- 
minant equal to unity at every point in the map, implying that these maps are 
volume-preserving at every point in the iteration. The dynamical map for the trace of 
the transfer matrix in ( 1  1 )  is shown in figure 1.  There are three major bands, as is the 
case for the map with the golden mean. In figure 2, the magnitude of the wavefunction 
given by (3) is plotted as a function of the lattice site number with the two kinds of 
hopping matrix elements chosen to satisfy te /  tA = 2.0 and the energy E = 0. The lattice 
corresponds to the Fibonacci sequence with the silver mean. The wavefunction is 
neither localised nor extended, like the Fibonacci lattice with the golden mean. 

2.2. The bronze mean 

When m = 1 and n = 3, the ratio of successive Fibonacci numbers FI+ , /F ,  approaches 
the bronze mean u,=(3+13'12)/2. We obtain the dynamical map for this case by 
writing the recursion relation as 

M,+, + ( M I  -]MF + MI-') = MI-] M,( M :  + MF') + M,-2. (15) 
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n 

Figure 1. Band structure of (4) when V, = 0.6 = - V, and the two values of the potential 
are arranged in the Fibonacci sequence with the silver mean. 

Taking the trace of this equation we obtain after a little algebra 

xl+l+2xI-lgl= (4x:-2)gl+l+xI-2 (16) 

XI+l = (4x:- 1)gl+l-2x1-lx1 (17a) 

& + I  =2x1-l(x1-gl)+xI-2 (17b) 

where gl = f Tr(Ml-2Ml-l). Equation (15 )  is consistent with 

where x1 and x2 have the same values as for the Fibonacci series with the silver mean 
and g ,  = 2xlx2 - x, + ( V, - VA)/2. By defining a three-dimensional vector rl = 
(xI, gl+l), (17)  are alternatively expressed as rl+l = F p ( r l )  where Fp is a non-linear 
dynamical map given explicitly by 

x1+,=(4x:-1)zl-2x1yl YI+l= XI z I + , = 4 x 1 [ ( 2 x : - l ~ z l - ~ l y l l + Y l .  (18) 
There is a conserved quantity associated with the mapping in (18). This quantity is 
given by the same form as the invariant for the silver mean except that zI + zl/2. Thus 
we have verified that the recursion relation in (8) has the same invariant for m = 1 and 
n = 1, 2 and 3. The map Fp has a six-cycle orbit given by 

Ap (0 ,  0 ,  b ) + Bp ( - 6, 0,O) + Cp (0,  - b, 0 )  + Dp (0, 0,  - b ) + Ep ( 6,0,0) + Fp (0,  6,O) + Ap 

where b = (I + 1)1’2 and I = ( V, - VB)2/4 is the constant of motion. It is easy to verify 
that Fp also has a two-cycle orbit given by 

AI($, 0,;) + Az(0, i, -i) + A l .  
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Figure 2. The magnitude of the electronic wavefunction lQnl at the centre of the band 
( E  = 0 )  for t , / tA=2.0.  lQ,l is plotted against site number n for the lattice with the silver 
mean. We choose Qo = 0 and = 1 in the non-diagonal model in (3) .  

This calculation shows that the Jacobian matrix for the map in (18) has determinant 
equal to unity at every point in the iteration, like the maps corresponding to the 
Fibonacci sequences with the golden and silver mean. The magnitude of the wavefunc- 
tion for the lattice with the bronze mean is plotted in figure 3 as a function of the 
lattice site number along the quasiperiodic direction for E = 0 and f B /  fA set equal to 
2 in (3). 

2.3. The copper mean 

We now turn to the class of second-order Fibonacci lattices for which the invariant is 
not the same as it is for the two cases discussed above. This set is generated by setting 
n = 1 in (8) and taking m = 2,3, .  . . . When m = 2 and n = 1, F,+J Ff approaches the 
copper mean value a, = 2. The trace map is obtained by taking the trace of 

MI,, = (M7-,  + M;?,)M/ - M;?,M,* (19) 

x/+1= (4x:-, -2)x,+ y (20) 

Equation (19) yields 

where y = -4 Tr(M;?,M,). When I is replaced by 1 +  1 in y and the recursion relation 
for the matrices is used, a short calculation shows that y is independent of I. Defining 
a two-dimensional vector by r = (x,, y l )  = (x,, x f - l ) ,  (20) defines a mapping on the 
two-dimensional plane where y remains unchanged for any orbit. The sequence with 
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Figure 3. Same as figure 2 for the wavefunction at the centre of the band ( E  = 0) for the 
lattice with the bronze mean. 

S, = { B } ,  S2 = { A } ,  S3 = {BBA},  and so on, has y = x2-2x,. The map in (20) has a 
two-cycle orbit given by (a, -1) + (-1, a). Setting E = 0, we find that the matrices are 
4-cycle and are given by 

with Mf = Mf+4 .  The 3-cycle of the trace given by (b, -a) + (-i, - 1 )  + (-1, i) has a 
matrix 6-cycle which is 

with M/ = We have verified that (20) has a four-cycle trace map with four-cycle 
matrix as well as a four-cycle trace map with an eight-cycle matrix. This abundance 
of cyclic orbits led us to investigate the values of x1 and x2 for which the orbits are 
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aperiodic or cyclic, i.e. bounded. Figure 4 shows the points which initiate bounded 
orbits and figure 5 shows a typical closed orbit. The Jacobian matrix for the fixed 
points of period two has eigenvalues 

A, = a( -15 * 161 'I2). 

The eigenvalues of the fixed points of period three, quoted above, are 

A, ={[53+9(41)'/2]. 

Both families of fixed points are saddle points and the value of the determinant of the 
Jacobian matrix depends on the point in the map where it is evaluated. That is, this 
map does not perserve the volume element locally and might be the reason why we 
have not been able to obtain a constant of motion. Figure 6 shows a plot of the band 
structure corresponding to the Fibonacci sequence with the copper mean. Unlike the 
band structure shown in figure 1, there are only two major sub-bands for this case. 
The magnitude of the wavefunction for this lattice is plotted in figure 7. It is clear 
that this wavefunction is localised, quite unlike the preceding cases corresponding to 
a binary string. However, the localisation in this model is not as strong as the 
(Anderson) localisation in the one-dimensional disqrdered system discussed by Mott 
and Twose [27]. For this kind of Anderson localisation, the envelope of the wavefunc- 
tion decays exponentially from some point in space. Tong [28] has presented an 
example for the localisation of electronic states in a one-dimensional disordered system. 

x1 

Figure 4. The set of initial points with coordinates (x,, y , )  which yield bounded, i.e. cyclic 
or aperiodic, orbits for the map in (20). 
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Figure 5. An aperiodic orbit for the copper mean map in (20) with xo =0,  y ,  = -m, 249 

2.4. The nickel mean 

When the Fibonacci numbers are given by F,+, = 3Ff-, + F,, the recursion relation for 
the transfer matrices is obtained by setting m = 3 and n = 1 in (8). In the limit 1 + CO, 

Fl+,/FI tends to the nickel mean of on= (1 + 131'2)/2. In this case we choose to take 
the trace of 

MI+, + M;:,M, = ( M ; - ,  + M;:])M/ (23) 

XI+] =2(4X:-1-3)X1-lX1+t.Li (24) 

which gives 

where pur = -5  Tr(M;?lMf). To obtain the recursion relation for pf we take the trace 
of 

M;?,M, = (M;:] +MI-1)M;21MI - M;'M:-,M, (25) 
where (25) follows directly from the recursion relation for the transfer matrices. After 
a little algebra, we obtain from (25) 

(26) 

(27a) 

= 2xI-1t.L,-I + X/-2(4X/-* 2 - 3). 
Equations (24) and (26) can be written compactly as 

XI+] = 2~1T/ + GI 
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n 

Figure 6. Band structure of the discrete Schrodinger equation when V, = 0.6 = - V,. The 
sequence of potentials is arranged according to the Fibonacci sequence with the copper 
mean. 

By defining a three-dimensional vector rl = ( X I ,  TI,  GI) ,  (27 )  define a three-dimensional 
map rI+] = F,, ( r I )  which is given explicitly by 

X I + ]  = 2XLVI + zr yr+1= (4x: - 31% z1+1 = 2xrzr +yr. (28 )  
The map in (28 )  has fixed points of period three given by 

A,,(;, 1, - i ) + B , ( i ,  - l , i )+C, , ( - i ,  -1, -i). 
The eigenvalues of this family of fixed points are 

A = O  A, = 5 * 2( 13)1’2. 

The map also has a fixed point of period one with coordinates ( -i, 1, i). The eigen- 
values of the Jacobian matrix for this point are 

A = O  A, = f ( l *  131’2). (30) 
All these fixed points are saddle points and the determinant of the Jacobian at these 
fixed points is zero. That is, this map is non-invertible at the fixed points. In figure 
8, we plot the initial points which give rise to bounded orbits for the nickel map and 
has some similarities with the plot in figure 7. 

2.5. A mixed case 

In view of the numerical results given above for the Fibonacci lattices with the silver 
and copper means, we now turn to the mixed case for which the recursion relation is 
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Figure 7, Same as figure 2 except that the lattice is arranged according to the Fibonacci 
sequence with the copper mean and i s /  t ,  = 0.95. 

given by 

M,+, = M:-,M:.  

This, in some sense, corresponds to a combination of two types of Fibonacci series. 
Our main interest is to see whether the orbits are more like those for the copper mean 
or silver mean. Rewriting (31) as 

MI+, + M:-, = M:- ,M,(M~ + M Y ' )  

X,+1 = (4X j - l  - 1)(2X:-,- 1)-2X1(2X:-2- 1). 

(32) 

(33) 

and taking the trace of (32), we obtain 

A collection of the initial points for which the orbits are bounded is shown in figure 
9. Thus the map defined in (29) has a behaviour similar to that of the map with the 
copper mean. It is not clear that this should be so but we have managed to identify 
the nature of the map through numerical calculations. Also, the determinant for the 
Jacobian matrix corresponding to the map in (33) depends on the coordinates of the 
point in the iteration. Figure 8 shows a plot of the points which initiate bounded orbits. 

3. Quasiperiodic dynamics of a third-order Fibonacci lattice 

We now carry out calculations to obtain the recursion relations among the traces of 
transfer matrices corresponding to a third-order Fibonacci lattice. 
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Figure 8. Same as figure 4, except that the dynamical map is given by (27) corresponding 
to the Fibonacci sequence with the nickel mean. 

The third-order Fibonacci numbers are generated by adding the three preceding 
numbers. They are given by F,+, = F,-,+ FI-] + Fl for 13 2 with Fo = Fl = F2 = 1. 
Closed-form analytic results for Fl can be obtained and calculation shows that, in the 
limit as I-, 00, FI+,/Fl tends to the mean value a, = 4(1+ 7L/3+ Y ! ' ~ ) ,  where yi = 
19+297'12. For the three building blocks A, B and C the sequence is constructed by 
SI+, = { S I - 2 S I - 1 S l }  for 12 3 with SI = {C}, S2 = {ABC} and S3 = {BCABC}. The inflation 
transformation for this sequence is therefore C + ABC, B + C and A + B. MI satisfies 
the recursion formula 

M,,, = MI-ZMl-lMI. (34) 
The energy excitation spectrum is calculated by determining those energies for which 
the corresponding wavefunctions do not increase as 1 increases. Since the matrices 
MI are unimodular, the condition that the energy is allowed could be transferred to 
the 'trace of the transfer matrix which must satisfy the relation Tr MI < 2. We now 
convert (34) into a very simple recursion relation for xI = 4 Tr MI by taking the trace 
of the equation 

Since Ml is a 2 x 2  matrix with determinant equal to unity, (35) yields for l a 2  

where GI =aTr(M,_,M,-,). The recursion relation for GI is obtained by taking the 
trace of the equation 

MI,, = MI-ZMl- l (Ml+M; l ) .  (35) 

XI+1= 4xIGI - XI-3 (36) 

M/-2M,-l  + Ml-4Ml-3 = M~~l(M~-!lMl~2M1~1 +M;I2)  (37) 
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Figure 9. Same as figure 4, except that the dynamical map is given by ( 3 3 ) .  

which follows directly from (34). After a little algebra, (37) gives 

GI = xI-IxI-2 - GI-2. 

Equations (36) and (38) jointly give the dynamical map in six-dimensional space for 
the third-order Fibonacci series defined in (34). This map is given in terms of the 
six-dimensional vector r, = ( wf, y I ,  g,, X I ,  z,, U,) where, for convenience, we define X I  = 
2x1 and g, =4G,. It is a simple matter to show that the dynamical map defined by (36) 
and (38) are consistent with the transformation 

(38) 

w + 1 =  gl Y l+l= XI &+I = XIY, - WI 

XI+ 1 = xlg,  - UI Zl+l = Y ,  Ol+l  = z,. 
The Jacobian matrix for this mapping has a determinant equal to unity and so it too 
is volume-preserving like the class of Fibonacci sequences which the map with the 
golden mean belongs to. In figure 10, we plot the wavefunction at the centre of the 
band of the non-diagonal model in (3) with tA=2, t g =  1 and tc = O S .  The initial 
conditions for the ternary map (diagonal model) are 

-1 1-*Tr(&) -1 
X-1 =f Tr (MA) 0 - 2 TdME) 

It is a simple matter to show that XI = 0, *1 are (trivial) fixed points with unit cycle 
for (36) and (38). Setting x - ~  = x,, = xl = x where 1x1 < 1, numerical calculations show 
that the resulting values of xI satisfy lxll < 1 for all 1. For example, when the initial 
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Figure 10. The magnitude of the wavefunction (l#,,I) at the centre of the band of the 
non-diagonal model of the Schrodinger equation. The hopping matrix elements are chosen 
as t, = 2, tB = 1 and t ,  = 0.5 in the third-order Fibonacci sequence. 

points are chosen as *2”*, the cycle is xI = x / + ~  and Mf = We have carried out 
an extensive search for the initial points x-], x,, and x, which give rise to bounded 
orbits. We have not been able to find any more points besides the ones along the 
diagonal (1, 1, 1)  of the cube and the trivial fixed points. 

4. Transmission of light through quasiperiodic media 

In a recent paper, Kohmoto e? a1 [29] proposed an experiment for light transmission 
through a multilayer medium arranged according to the Fibonacci sequence. The 
medium is assumed to be translationally invariant in the plane perpendicular to the 
superlattice direction of growth and is bounded on either side by a homogeneous 
semi-infinite medium. In this section, we obtain the transmission coefficient of a 
transverse electric wave which is incident on a medium constructed according to a 
generalised Fibonacci sequence with vacuum on one side and a dielectric on the other 
simulating the effect of a substrate. 

We take the thickness of the lth layer as dr and its refractive index as nf. Let Or be 
the angle which light makes with the normal to the interface when travelling within 
the 2th layer. The transfer matrix relating the amplitudes of the electric vectors on 
opposite sides of this dielectric slab is [30] 

COS -ip;’sin p ,  
-ipf sin p r  cos p r  
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where the optical phase length P I  = knldl cos 4, p I  = nI cos Or and k is the wavenumber 
of the incident beam of light in vacuum. Clearly, M ( n l )  is unimodular. The transfer 
matrix through N layers is also unimodular and given by 

Assuming that po  is the value of p I  in vacuum and p s  is the value in the other medium 
adjacent to the superlattice, calculation shows that the transmission coefficient is given 
by 

T = P ~ M ? ,  + P ~ G  + ( POPS)~I 21 + I M ~  1 I +   PO PSI-^ (42) 

For light propagation through a multilayer medium arranged according to a third- 
order Fibonacci sequence of N = F, layers, the matrix in (41) is calculated according 
to (34), with the initial values 

Mi = Mc 

M2 = McaMasMc 

M,  = McsMcM2. (43) 

0. 

T 

0 

4 
P 

Figure 11. Plot of the transmission coefficient T as a function of the optical phase length 
p for normal incidence. The layered medium has F,( = 57 layers) and is arranged according 
to the third-order Fibonacci sequence defined in (34). The indices of refraction are chosen 
as nA = 2, nB = 3 and n, = 1.5. 
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Here, Mc is the matrix in (40) for propagation through a medium of type C, whereas 
McA stands for the matrix where light is passing through a type-A material after 
emerging from a material of type C. Similar definitions for MAB and M,, apply. The 
Fibonacci multilayer is sandwiched by two media made from type-C material. 

The results in (40)-(43) apply for an arbitrary angle of incidence, wavenumber k 
and thickness of the layers. In order to simplify the book-keeping involved in numerical 
calculations, we have taken the incident light to be normal and the thickness of the 
layers to be such that knAd, = knBdB = kncdc = p. A plot of T against p when po  = p s  = 
1.5 in (42) and n, = 2, nB = 3 and n, = 1.5 is presented in figure 11, for a chain with 
F,=57 sites. In order to better understand the effect of quasiperiodicity on the 
transmissivity of the medium, we have plotted T in figure 12 as a function of p for a 
periodic superlattice consisting of thirty AB blocks, i.e. sixty layers. The multilayer 
is sandwiched by two media of material of type C. The indices of refraction for the 
various types of material are the same as those chosen in figure 11. It is clear from 
figure 12 that there is only one range of values of the optical phase length /3 for which 
the transmission coefficient is negligible. There are, however, several ranges of film 
thickness which yield total reflection for the third-order Fibonacci lattice. The occur- 
rence of total reflectivity of a multilayer system has been known for some time but the 
effect due to quasiperiodicity on the transmissivity is not fully understood. It is found 
that total reflectivity occurs around p = ( m  + ;)7r for the periodic multilayer. This 
feature appears to be independent of the values chosen for the refractive indices of 
the blocks or the thickness of the slab. 

0. 

T 

0. 

L 5 6 

P 
Figure 12. The transmission coefficient T plotted against the optical phase length p for 
normal incidence. There are 60 layers consisting of 30 AB blocks forming a periodic lattice. 
The indices of refraction are nA = 2 and ns = 3. 
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5. Resistance of a one-dimensional Fibonacci lattice 

Several years ago, Anderson [31] pointed out that the electronic wavefunction in a 
macroscopic sample becomes localised if the randomness in the potential is sufficiently 
strong. Subsequently, the conceptual framework of a scaling description of the localisa- 
tion problem was presented by Thouless and co-workers [33]. Assuming that the states 
near the Fermi level are localised and the occupied states of the spectrum form a dense 
set, the scaling theory states that the electrical resistance grows exponentially with 
sample size. Quasiperiodic systems, however, can have states which are either extended, 
localised or critical. Since the localisation length 6 is not well defined for critical states 
(in some sense, 6 is infinite), it is of interest to study the behaviour of the electrical 
resistance as a function of the length of the one-dimensional lattice. In this section, 
we calculate the electrical resistance of a one-dimensional quasicrystal with off-diagonal 
non-periodicity described by the tight-binding Hamiltonian in (3). The chain is assumed 
to have N lattice sites and the dimensionless resistance is defined by the Landauer 
[34] formula as the ratio of the reflection coefficient to the transmission coefficient. 
Recently, some questions have been raised by Sutherland and Kohmoto [35] concerning 
the suitability of the Landauer formula for a quasiperiodic system. These objections 
are justifiable since the energy spectrum is singularly continuous, i.e. the energy gaps 
are dense everywhere in the spectrum which means that linear response to an external 
electric field is not well defined. Therefore, treating the resistance as a means of 
characterising the electronic states, we use the Landauer formula and assume that only 
one scattering channel is available. Calculation shows that the Landauer resistance is 
given by [36,37] 

1 
[ / / M N  1 1 2  + 2(cos k ) (  Mr: - M2,2)(Mr: - M Z )  p=zzi 

-4(C0s2 k ) M Z M g  -21. 

Here, llMN / I 2  is the sum of the squares of the elements of the 
defined by 

M ( N ) = M ( ~ N + ~ ,  ~ N ) M ( ~ N ,  t ~ - i )  * M(t2, t i )  

where 

< 2 matrix MN = 

(44) 

(45) 

In (44), the energy is defined in terms of the wavenumber k by E = 2t0 cos k where 
the hopping matrix elements are equal to to outside the disordered segment 1 S 1 S N. 
Figure 13 shows a plot of the resistance p in (44) when the energy E = O  and the 
hopping matrix elements take on values tA and tB  arranged according to the Fibonacci 
sequence with the silver mean and t B /  tA = 2.0. Clearly, the resistance p has a discrete 
structure and has a power law behaviour which is known for the Fibonacci lattice with 
the golden mean. These numerical results show that the features in the resistance 
obtained by Schneider et a1 [36] and Sutherland and Kohmoto [35] are not unique to 

t For a review of the work carried out on the properties of disordered electronic systems, see [32]. 
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n 

Figure 13. Plot of the resistance of a one-dimensional quasicrystal as a function of the 
number of sites in the chain. The energy is at the centre of the band and the Fibonacci 
sequence has the silver mean with t s /  t ,  = 2.0. 

the golden mean case but appears to be typical for the quaiperiodic arrays belonging 
to the family of Fibonacci sequences [38-411. 

6. Summary 

In this paper we have computed the recursion relations among the traces of transfer 
matrices corresponding to several lattices which are extensions of the Fibonacci case 
with the golden mean. There are some other papers dealing with extensions of 
quasicrystal models [38,40-421. In [42], Bombieri and Taylor have studied the condi- 
tions of quasiperiodicity in one-dimensional lattices. 

The main points to focus on are as follows. 
(i)  The trace maps of the golden, silver and bronze mean lattices are volume- 

preserving while those of the copper and nickel mean lattices are volume-non- 
preserving. Unlike the volume-preserving class, the volume-non-preserving lattices are 
found to have a surprisingly large number of bounded orbits for the trace maps, 
implying the possible existence of attractors. These lattices also have localised states. 

(ii) The third-order Fibonacci lattice discussed here has a map which is volume- 
preserving. 

(iii) Light transmission through a multilayer medium arranged according to a 
generalisation of the Fibonacci sequence has been studied theoretically. We find several 
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ranges of film thickness for which there is total reflection for the third-order Fibonacci 
lattice. 

(iv) The resistance of the third-order Fibonacci lattice has a similar power law 
behaviour as the Fibonacci lattice with the golden mean. 

Recently, experiments have been carried out on Fibonacci superlattices. Merlin et 
a1 [43] analysed quasiperiodic GaAs-(A1Ga)As by x-ray and Raman scattering experi- 
ments. Dharma-wardana et aZ[44] reported a study of Raman scattering from acoustic 
phonons in Si-Ge,Si,-, strained-layer Fibonacci superlattices. Also Karkut et a1 [45] 
reported on similar experiments for superconducting MO-V superlattices. Behrooz et 
al [46] have measured the superconducting transition temperature as a function of 
magnetic field of thin (500 A)  A1 wires arranged in quasicrystalline arrays. It remains 
to be seen whether lattices having volume-preserving and volume-non-preserving trace 
maps discussed in this paper would lead to any measurable quantities which have 
different characteristics from those arising from other types of quasiperiodic lattices. 
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